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Abstract

Image compression is an essential approach for de-

creasing the size in bytes of the image without deterio-

rating the quality of it. Typically, classic algorithms are

used but recently deep-learning has been successfully ap-

plied. In this work, is presented a deep super-resolution

work-flow for image compression that maps low-resolution

JPEG image to the high-resolution. The pipeline consists

of two components: first, an encoder-decoder neural net-

work learns how to transform the downsampling JPEG im-

ages to high resolution. Second, a combination between

Generative Adversarial Networks (GANs) and reinforce-

ment learning Actor-Critic (A3C) loss pushes the encoder-

decoder to indirectly maximize High Peak Signal-to-Noise

Ratio (PSNR). Although PSNR is a fully differentiable met-

ric, this work opens the doors to new solutions for maxi-

mizing non-differential metrics through an end-to-end ap-

proach between encoder-decoder networks and reinforce-

ment learning policy gradient methods.

1. Introduction

Image compression with deep learning systems is an ac-

tive area of research that recently has becomes very com-

pelling respect to the modern natural images codecs as

JPEG2000, [1], BPG [2] WebP currently developed by

Google R© [3]. The new deep learning methods are based

on an auto-encoder architecture where the features maps,

generate from a Convolutional Neural Networks (CNN) en-

coder, are passed through a quantizer to create a binary rep-

resentation of them, and subsequently given in input to a

CNN decoder for the final reconstruction. In this view, sev-

eral encoders and decoders models have been suggested as a

ResNet [4] style network with the parametric rectified linear

units (PReLU) [5], generative approach build on GANs [6]

or with a innovative hybrid networks made with Gated Re-

current Units (GRUs) and ResNet [7]. In contrast, this paper

proposes a super-resolution approach, build on a modifying

version of SRGAN [8], where downsampling JPEG images

are converted at High Resolution (HR) images. Hence, in

order to improve the final PSNR results, a Reinforcement

Learning (RL) approach is used to indirectly maximize the

PSNR function with an A3C policy [9] end-to-end joined

with SRGAN. The main contributions of this works are:

(i) Propose a compression pipeline based on JPEG image

downsampling combined with a super-resolution deep net-

work. (ii) Suggest a new way for maximizing not differen-

tiable metrics through RL. However, even if the PSNR met-

ric is a fully differentiable function the proposed method

could be used in future applications for non-euclidean dis-

tance such as in the Dynamic Time Warping (DTW) algo-

rithms [10].

2. Methods

In this section is given a more formal description of the

suggested system which includes: the network architecture

and the losses used for training.

2.1. Network Architecture

The architecture consists of three main blocks: encoder,

decoder and a discriminator (Figure 1). Where ILR is the

low-resolution (LR) input image (i.e compressed with a

JPEG encoder) of size rW × rH × C ( i.e with C color

channels and W, H the image width and height); where a

bicubic downsampling operation with factor r is applied.

While the output is an HR image defined as IHR.

2.1.1 Encoder

The encoder is basically a ResNet [4], where the first con-

volution block has a kernel size of 9 × 9 and 64 feature

maps with a ParametricReLU activation function. Then,

five Residual Blocks (RB) are stacked together. Each of

those RB consists of two convolution layers with kernel size

3×3 and 64 feature maps followed by Batch-Normalisation

(BN) and ParametricReLU . After that, a final convolu-

tion block of 3× 3 and 64 feature maps are repeated. How-

ever, the encoder is also joint with a fully connected layer
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Figure 1: The figure shows the proposed RL-SRGAN model composed by encoder, decoder and discriminator networks. The

objective of this model is to map the compressed JPEG Low Resolution (LR) Image to the HR. The encoder can be seen

as: (i) an RL policy network able to increase its HR prediction through the indirect maximization of the PSNR at each i

training iterations. (ii) A GANs, where the discriminator (i.e VGG network) push the decoder to produce images similar to

the original HR ground truth.

and, at each i training iterations, produces an action pre-

diction of the actual PSNR together with a value function

V π(IHR(i)) ( i.e explained in 2.2.2 section).

2.1.2 Decoder

The decoder is fundamentally another deep network that al-

lows increasing the resolution of the output encoder with

eight subpixel layers [11].

2.1.3 Discriminator

The encoder, joint with the decoder, define a generator

H(·)θ, where θ = [wL; bL] are the weight and biases param-

eters for each L-layers for the specific network. A third net-

work D(·)θ, called discriminator, is also optimized concur-

rent with H(·)θ for solving the following adversarial min-

max problem:

lHR
GAN = minθ maxθEIHR

∼ptrain(IHR)[log(D(IHR))]+

+EILR
∼pH(ILR)[log(1−D(H(ILR)))]

(1)

The idea behind lHR
GAN loss is to train a generative model

H(·)θ to fool D(·)θ. Indeed, the discriminator is trained

to distinguish super-resolution images IHR, generated by

H(·)θ, from those of the training dataset. In this way, the

discriminator is increasingly struggled to distinguish the

IHR images (generated by H(·)θ) from the real ones and

consequently driving the generator to produce results closer

to the HR training set images. In the proposed model, the

discriminator D(·)θ is parameterized through a VGG net-

work with LeakyReLU activation (α = 0.2) without max-

pooling.

2.2. Loss function

The accurate definition of the loss function is crucial for

the performance of the H(·)θ generator. Here, we divide the

paragraph into three losses: the SRGAN loss, the RL loss,

and the proposed loss.

2.2.1 SRGAN loss

The SRGAN loss is determined as a combination of three

other separate losses: MSE loss, VGG loss, and GANs loss.

Where the MSE loss is defined as:

lHR
MSE =

1

WH

W
∑

x=1

H
∑

y=1

(IHR
x,y −Hθ(I

LR)x,y)
2 (2)

It represents the most utilized loss in super-resolution

methods but remarkably sensitive to high-frequency peak

with smooth textures [8] . For this reason, is used a VGG

loss [8] based on the ReLU activation function of a 19 layer

VGG (defined here as Ω(·)) network:

lHR
VGG =

1

WH

W
∑

x=1

H
∑

y=1

(Ω(IHR)x,y − Ω(Hθ(I
LR)x,y)

2

(3)

Where W and H are the dimension of IHR image in the

MSE loss. Whilst, for the VGG loss, they are the Ω(·) out-

put feature maps dimension. While the GANs loss is previ-

ously defined in the equation 1. Finally, the total SRGAN

loss is determined as:

lHR
SRGAN = lHR

MSE + 1e− 3× lHR
GAN + 6e− 3× lHR

VGG (4)
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2.2.2 RL loss

The aim of RL loss is to indirectly maximize the PSNR

through an actor-critic approach [9].

Given Qπ(ILR, PSNRpred) a map between the low res-

olution input ILR and the current PSNR value prediction

PSNRpred (see fig. 1). Then, at each i training iterations,

is calculated the reward value as a threshold between the

previous PSNR at iteration i − 1 and that one to iteration

i as follows:

r(i) =

{

1, if PSNRi > PSNRi−1

0, otherwise
(5)

where the PSNR(·) function is defined as:

PSNR = 20 · log10(MAXI)−

10 · log10(
1

mn

m−1
∑

l=0

n−1
∑

j=0

[IHR(l, j)− IHR
gt (l, j)]2)

(6)

The MAXI is the maximum pixel value of the HR im-

age, IHR is the output encoder HR image, while IHR
gt is

the corresponding HR ground truth for each pixel (l, j) at

m× n HR size.

The reward (eq. 5), actually depends on the PSNRpred

action taken by the policy for two main reasons: (i) during

the training process the PSNRpred becomes an optimal es-

timator of the decoder output IHR (used in 6). (ii) The

latent space between the encoder and the fully connected

layer is the same and then share equal policy information.

Thus, all the rewards are accumulated every k training steps

through the following return function:

R(i) =

∞
∑

k=0

γkr(i+ k) (7)

where γ ∈ (0, 1] is a discount factor. It is therefore pos-

sibile to define the Qπ(·) function as an expectation of R(k)
given the input ILR and PSNRpred.

Qπ(ILR, PSNRpred) = E[R(i)|ILR(i) = ILR, PSNRpred]
(8)

To notice, the encoder, together with the

fully connected layer, become the policy network

π(PSNRpred|I
LR(i); θH). This policy network is

parametrized by the standard REINFORCE method

on the θ encoder parameters with the following gradient

direction:

∇θ log π(PSNRpred|I
LR(i); θ) ·R(i) (9)

It can be consider an unbiased estimation of ∇θ ·E[R(i)].
Especially, to reduce the variance of this evaluation (and

keeping it unbiased) is desirable to subtract, from the return

function, a baseline V (ILR(i)) called value function. The

total policy agent gradient is given by:

lHR
π = log π(PSNRpred|I

LR(i), θ) · (R(i)− V (ILR(i)))
(10)

The term R(i) − V (ILR(i)) can be considered a esti-

mation of the advantage to predict PSNRpred for a given

ILR(i) input. Consequently, a learnable estimation of the

value function is used as V (ILR(i)) ≈ V π(ILR(i)). This

approach, is further called generative actor-critic [9] be-

couse the PSNRpred prediction is the actor while the base-

line V π(ILR(i)) is its critic. The RL loss is then calculated

as:

lHR
RL = 5e− 3 ∗

∑

(R(i)− V π(ILR(i)))2 − lHR
π (11)

2.2.3 Proposed loss

The Proposed Loss (PL) combines both SRGAN loss and

RL loss. After every k step (i.e due to the rewards accumu-

lation process at each i training iterations), the lHR
RL is added

on lHR
SRGAN .

lHR
PL =

{

lHR
SRGAN + lHR

RL , if k = i

lHR
SRGAN , otherwise

(12)

Figure 2: The above figure shows the results for RL-

SRGAN compared to SRGAN, LANCZOS, and the orig-

inal ground truth. As we can see, LANCZOS simply de-

stroys the edges producing artifacts on the global image.

Whilst, SRGAN forms noticeable chromatic aberration (i.e

transition from orange to yellow color) near the edges. Even

though, the RL-SRGAN holds the color uniform with net

outline details nearby to the edges; analogous to the origi-

nal ground truth.

2.3. Experiments and Results

In this section is evaluate the method suggested. The

dataset used is the CLIC compression dataset [12] corre-

spondingly divided in the train, valid and test sets. The
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Methods PSNR MS-SSIM

RL-SRGAN 22.34 0.783

SRGAN 22.15 0.780

LANCZOS 21.44 0.760

Table 1: The table shows the PSNR and MS-SSIM re-

sults obtained in the validation set for the proposed rl-srgan

method with srgan and lanczos upsampling.

train has 1634 HR images, valid 102 and test 330. The

evaluation metrics used are the PSNR and MS-SSIM [13]

for both valid and test. An ADAM optimizer is used with a

learning rate of 1e − 3 within 22876 model iterations until

convergence. The Reinforcement Learning SRGAN (RL-

SRGAN) is compared with the SRGAN model work [8] and

the Lanczos resampling (i.e a smooth interpolation through

a convolution between the ILR image and a stretched

sinc(·) function). Finally, the table 1 highlights that the

PSNR difference between LANCZOS upsampling and RL-

SRGAN is 0.9, while of 0.19 with SRGAN; whereas the

MS-SSIM remains constant between RL-SRGAN and SR-

GAN for the validation set. This also shows a better accu-

racy for the RL-SRGAN model. While, for the tests, RL-

SRGAN achieve 20.06 of PSNR and 0.7503 of MS-SSIM.

Furthermore, the compression rate for the validation set im-

ages is 3.812.623 bytes respect 362.236.068 bytes of origi-

nal HR dataset. While for the test set images is 5.228.411

bytes in contrast with the 5.882.850.012 bytes of the origi-

nal one. That makes the method a good trade-off between

compression capacity and acceptable PSNR.

2.4. Discussion

A modified version of SRGAN is suggested where an

A3C method is joined with GANs. Sadly, the proposed

method has strong limitations due to the drastic downsam-

pling of the input JPEG image. This downsampling causes

loss of information, difficult to recover from the super-

resolution network, which leads to lower results in PSNR

and MS-SSIM on the test set (i.e 20.06 and 0.7503 re-

spectively). Despite, the results (table 1) emphasize slight

improvement performances for RL-SRGAN related within

SRGAN and a baseline LANCZOS upsampling filter. How-

ever, the proposed method compresses all test files in a par-

simonious way respect to the challenge methods. Indeed,

the total dimension of the compression test set is of 5236870

bytes respect to 15748677 bytes of CLIC 2019 winner.

Finally, a new method for maximizing non-differentiable

functions is here suggested through reinforcement learning

technique.
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